MAYBE 1.971 H-Termination proof of /home/matraf/haskell/eval_FullyBlown_Fast/empty.hs
H-Termination of the given Haskell-Program with start terms could not be shown:



HASKELL
  ↳ BR

mainModule Main
  ((enumFrom :: Float  ->  [Float]) :: Float  ->  [Float])

module Main where
  import qualified Prelude



Replaced joker patterns by fresh variables and removed binding patterns.

↳ HASKELL
  ↳ BR
HASKELL
      ↳ COR

mainModule Main
  ((enumFrom :: Float  ->  [Float]) :: Float  ->  [Float])

module Main where
  import qualified Prelude



Cond Reductions:
The following Function with conditions
undefined 
 | False
 = undefined

is transformed to
undefined  = undefined1

undefined0 True = undefined

undefined1  = undefined0 False



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
HASKELL
          ↳ NumRed

mainModule Main
  ((enumFrom :: Float  ->  [Float]) :: Float  ->  [Float])

module Main where
  import qualified Prelude



Num Reduction: All numbers are transformed to thier corresponding representation with Pos, Neg, Succ and Zero.

↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ NumRed
HASKELL
              ↳ Narrow
              ↳ Narrow

mainModule Main
  (enumFrom :: Float  ->  [Float])

module Main where
  import qualified Prelude



Haskell To QDPs


↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ NumRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
QDP
                    ↳ QDPSizeChangeProof
                  ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_primMulNat(Succ(vx3100)) → new_primMulNat(vx3100)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ NumRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
QDP
                    ↳ RuleRemovalProof
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_numericEnumFrom(vx3) → new_numericEnumFrom(new_ps(vx3))

The TRS R consists of the following rules:

new_primPlusInt(Neg(Succ(Zero))) → Pos(Zero)
new_primPlusInt(Neg(Succ(Succ(vx30000)))) → Neg(Succ(vx30000))
new_primPlusNat(Succ(vx3000)) → Succ(Succ(new_primPlusNat0(vx3000)))
new_primPlusInt(Pos(vx300)) → Pos(new_primPlusNat(vx300))
new_primPlusNat0(Zero) → Zero
new_primPlusNat(Zero) → Succ(Zero)
new_ps(Float(vx30, vx31)) → Float(new_primPlusInt(vx30), new_primMulInt(vx31))
new_primMulNat0(Zero) → Zero
new_primMulInt(Pos(vx310)) → Pos(new_primMulNat0(vx310))
new_primPlusNat0(Succ(vx30000)) → Succ(vx30000)
new_primMulNat0(Succ(vx3100)) → new_primPlusNat(new_primMulNat0(vx3100))
new_primMulInt(Neg(vx310)) → Neg(new_primMulNat0(vx310))
new_primPlusInt(Neg(Zero)) → Pos(Succ(Zero))

The set Q consists of the following terms:

new_primPlusInt(Neg(Succ(Succ(x0))))
new_primPlusInt(Neg(Zero))
new_primMulInt(Neg(x0))
new_ps(Float(x0, x1))
new_primPlusNat(Succ(x0))
new_primPlusInt(Pos(x0))
new_primMulNat0(Succ(x0))
new_primMulInt(Pos(x0))
new_primPlusNat(Zero)
new_primPlusNat0(Zero)
new_primMulNat0(Zero)
new_primPlusInt(Neg(Succ(Zero)))
new_primPlusNat0(Succ(x0))

We have to consider all minimal (P,Q,R)-chains.
By using the rule removal processor [15] with the following polynomial ordering [25], at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.

Strictly oriented rules of the TRS R:

new_primPlusInt(Neg(Succ(Zero))) → Pos(Zero)
new_primPlusInt(Neg(Zero)) → Pos(Succ(Zero))

Used ordering: POLO with Polynomial interpretation [25]:

POL(Float(x1, x2)) = 2·x1 + 2·x2   
POL(Neg(x1)) = 2 + 2·x1   
POL(Pos(x1)) = 2·x1   
POL(Succ(x1)) = x1   
POL(Zero) = 0   
POL(new_numericEnumFrom(x1)) = x1   
POL(new_primMulInt(x1)) = x1   
POL(new_primMulNat0(x1)) = x1   
POL(new_primPlusInt(x1)) = x1   
POL(new_primPlusNat(x1)) = x1   
POL(new_primPlusNat0(x1)) = x1   
POL(new_ps(x1)) = x1   



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ NumRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                    ↳ RuleRemovalProof
QDP
                        ↳ NonTerminationProof
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_numericEnumFrom(vx3) → new_numericEnumFrom(new_ps(vx3))

The TRS R consists of the following rules:

new_primPlusInt(Neg(Succ(Succ(vx30000)))) → Neg(Succ(vx30000))
new_primPlusNat(Succ(vx3000)) → Succ(Succ(new_primPlusNat0(vx3000)))
new_primPlusInt(Pos(vx300)) → Pos(new_primPlusNat(vx300))
new_primPlusNat0(Zero) → Zero
new_primPlusNat(Zero) → Succ(Zero)
new_ps(Float(vx30, vx31)) → Float(new_primPlusInt(vx30), new_primMulInt(vx31))
new_primMulNat0(Zero) → Zero
new_primMulInt(Pos(vx310)) → Pos(new_primMulNat0(vx310))
new_primPlusNat0(Succ(vx30000)) → Succ(vx30000)
new_primMulNat0(Succ(vx3100)) → new_primPlusNat(new_primMulNat0(vx3100))
new_primMulInt(Neg(vx310)) → Neg(new_primMulNat0(vx310))

The set Q consists of the following terms:

new_primPlusInt(Neg(Succ(Succ(x0))))
new_primPlusInt(Neg(Zero))
new_primMulInt(Neg(x0))
new_ps(Float(x0, x1))
new_primPlusNat(Succ(x0))
new_primPlusInt(Pos(x0))
new_primMulNat0(Succ(x0))
new_primMulInt(Pos(x0))
new_primPlusNat(Zero)
new_primPlusNat0(Zero)
new_primMulNat0(Zero)
new_primPlusInt(Neg(Succ(Zero)))
new_primPlusNat0(Succ(x0))

We have to consider all minimal (P,Q,R)-chains.
We used the non-termination processor [17] to show that the DP problem is infinite.
Found a loop by semiunifying a rule from P directly.

The TRS P consists of the following rules:

new_numericEnumFrom(vx3) → new_numericEnumFrom(new_ps(vx3))

The TRS R consists of the following rules:

new_primPlusInt(Neg(Succ(Succ(vx30000)))) → Neg(Succ(vx30000))
new_primPlusNat(Succ(vx3000)) → Succ(Succ(new_primPlusNat0(vx3000)))
new_primPlusInt(Pos(vx300)) → Pos(new_primPlusNat(vx300))
new_primPlusNat0(Zero) → Zero
new_primPlusNat(Zero) → Succ(Zero)
new_ps(Float(vx30, vx31)) → Float(new_primPlusInt(vx30), new_primMulInt(vx31))
new_primMulNat0(Zero) → Zero
new_primMulInt(Pos(vx310)) → Pos(new_primMulNat0(vx310))
new_primPlusNat0(Succ(vx30000)) → Succ(vx30000)
new_primMulNat0(Succ(vx3100)) → new_primPlusNat(new_primMulNat0(vx3100))
new_primMulInt(Neg(vx310)) → Neg(new_primMulNat0(vx310))


s = new_numericEnumFrom(vx3) evaluates to t =new_numericEnumFrom(new_ps(vx3))

Thus s starts an infinite chain as s semiunifies with t with the following substitutions:




Rewriting sequence

The DP semiunifies directly so there is only one rewrite step from new_numericEnumFrom(vx3) to new_numericEnumFrom(new_ps(vx3)).




Haskell To QDPs